
Barishal University Journal Part 1, 5(1&2): 1-14 (2018) ISSN 2411-247X 

1 

ORIENTED MANIFOLDS WITH SMOOTH FAMILIES AND 

MODULE OF SKEW LINEAR MAPS 

Md. Shafiul Alam
*
, Chinmayee Podder and Abdullah Ahmed Foisal 

Department of Mathematics, University of Barishal, Barishal 8200, Bangladesh 

Abstract 

Some basic properties of smooth families of differential forms and oriented 𝑛-

manifolds are developed in this paper. The module of skew 𝑝-linear maps 𝐴𝑝(𝑀) from 

𝒳 𝑀 to 𝒮 𝑀  is extended to 𝐴0 𝑀  by putting 𝑖 𝑋 𝑓 = 0, 𝑓 ∈ 𝒮 𝑀 . The set of 

smooth families of 𝑝-forms  𝐴𝑡
𝑝 𝑀  

𝑡 ∈ ℝ
 on 𝑀 is the set of smooth families of cross-

sections in the vector bundle ⋀𝑝𝑇𝑀
∗  and  𝐴𝑡

𝑝 𝑀  
𝑡 ∈ ℝ

= 𝐴0,𝑝 ℝ × 𝑀 . Every smooth 

family of 𝑝-forms on 𝑀 is homogeneous of bidegree  0, 𝑝  and has a differential form on 

ℝ × 𝑀. For a gradient𝛿𝑓 and one-form 𝜔, we have 𝑖 𝑋 𝛿𝑓 = 𝑋 𝑓  and 𝑖 𝑋 𝜔 =  𝜔, 𝑋  
respectively. Finally, a graded 𝛿-stable ideal 𝐴𝑀 ℝ × 𝑀 ⊂ 𝐴 ℝ × 𝑀  is defined for an 

oriented 𝑛-manifold 𝑀 and it is shown that ∫𝐼×𝑀  𝛿𝛷 = ∫𝑀𝑗𝑏
∗𝛷 − ∫𝑀𝑗𝑎

∗𝛷 for 𝛷 ∈

𝐴𝑀
𝑛  ℝ × 𝑀  and ∫𝐵𝛿𝛷 = ∫𝑆𝑖

∗𝛷 for 𝛷 ∈ 𝐴𝑛 𝑈 . 

Keywords: Manifolds, vector bundle, smooth function, differential form, skew 𝑝-

linear maps. 

Introduction 

Let   𝑈𝛼 , 𝑢𝛼 ∶ 𝛼 ∈ 𝐼  be an atlas for a topological manifold 𝑀. Let 𝑈𝛼 ,  𝑈𝛽  be 

two neighbourhoods such that 𝑈𝛼𝛽 = 𝑈𝛼  𝑈𝛽 ≠ ∅. Then, a homeomorphism 

𝑢𝛼𝛽 ∶ 𝑢𝛼 𝑈𝛼𝛽  →  𝑢𝛼 𝑈𝛼𝛽   is defined by 𝑢𝛼𝛽 = 𝑢𝛼 ∘ 𝑢𝛽
− 1. This map is known as 

the identification map for 𝑈𝛼  and 𝑈𝛽  (Bishop and Crittenden, 1964). Also, 

𝑢𝛾𝛽 ∘ 𝑢𝛽𝛼 = 𝑢𝛾𝛼  in 𝑢𝛼 𝑈𝛼𝛽𝛾   and 𝑢𝛼𝛼  𝑥 = 𝑥,  𝑥 ∈ 𝑢𝛼 𝑈𝛼 .  If all the 

identification maps of an atlas   𝑈𝛼 , 𝑢𝛼   are smooth, then the atlas 
  𝑈𝛼 , 𝑢𝛼  is called smooth (Hoffman and Spruck, 1974). Two smooth atlases 
  𝑈𝛼 , 𝑢𝛼   and   𝑉𝑖 , 𝑣𝑖   are said to be equivalent if all the maps  

𝑣𝑖 ∘  𝑢𝛼
− 1 ∶ 𝑢𝛼 𝑈𝛼 ∩ 𝑉𝑖 → 𝑣𝑖  𝑈𝛼 ∩ 𝑉𝑖  

and their inverses are smooth. Every smooth structure on 𝑀 is an 
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equivalence class of smooth atlases on 𝑀 and a topological manifold with a 

smooth structure is called a smooth manifold (Olum, 1953).  

Consider two manifolds 𝑀,  𝑁 and let 𝜑: 𝑀 → 𝑁be a continuous map. Assume 

that   𝑈𝛼 , 𝑢𝛼   and   𝑉𝑖 , 𝑣𝑖   are atlases for 𝑀 and 𝑁respectively. Then 𝜑 

defines continuous maps 𝜑𝑖𝛼 ∶ 𝑢𝛼 𝑈𝛼 ∩ 𝜑− 1(𝑉𝑖) → 𝑣𝑖 𝑉𝑖  by 

𝜑𝑖𝛼 =  𝑣𝑖 ∘  𝜑 ∘  𝑢𝛼
− 1.  

If the maps 𝜑𝑖𝛼  are smooth, then 𝜑: 𝑀 → 𝑁 is said to be smooth. This 

definition does not depend on the choice of atlases for 𝑀and 𝑁. Also, 

𝜇 ∘ 𝜑: 𝑀 → 𝑃 is smooth if the maps 𝜑: 𝑀 → 𝑁 and 𝜇: 𝑁 → 𝑃are smooth 

(Narasimhan, 1968). The set of smooth maps from 𝑀to 𝑁is denoted by 

𝒮(𝑀; 𝑁).  If 𝑓 and 𝑔are two smooth functions on a manifold 𝑀, then smooth 

functions 𝜆𝑓 + 𝜇𝑔 and 𝑓𝑔are defined as follows 

 𝜆𝑓 +  𝜇𝑔  𝑥 =  𝜆𝑓 𝑥 +  𝜇𝑔 𝑥 , 𝜆, 𝜇 ∈ ℝ  

 𝑓𝑔  𝑥 = 𝑓 𝑥  𝑔 𝑥 , 𝑥 ∈ 𝑀. 

These operations relate the set of smooth functions on 𝑀 to an algebra over ℝ and 

this is denoted by  𝒮(𝑀). Assume that {𝑈𝛼 } is a locally finite family of open sets 

of 𝑀, and let 𝑓𝛼 ∈ 𝒮 𝑀  satisfy the condition 𝑐𝑎𝑟𝑟 𝑓𝛼 ⊂ 𝑈𝛼 . Then, there is a 

neighbourhood 𝑉(𝑎) which meets only finitely many of the 𝑈𝛼  for each 𝑎 ∈

𝑀(Block and Weinberger, 1999). Consequently,  𝑓𝛼  𝛼 is a finite sum in this 

neighbourhood and a smooth function 𝑓on 𝑀is defined as follows 

𝑓 𝑥 =  𝑓𝛼(𝑥)

𝛼

, 𝑥 ∈ 𝑀. 

Let 𝑇𝑀  be a tangent bundle, then a vector field 𝑋 on a manifold 𝑀is a cross-

section (Kobayashi and Nomizu, 1963) in 𝑇𝑀 . Therefore, a tangent vector 𝑋(𝑥) is 

assigned to every point 𝑥 ∈ 𝑀 by a vector field 𝑋such that the map 𝑀 → 𝑇𝑀  is 

smooth. A module over the ring 𝒮 𝑀  is formed by the vector fields on 𝑀 and 

isdenoted by 𝒳(𝑀). Let 𝜉 be a vector bundle. A cross-section𝜎in 𝜉 is a smooth 

map 𝜎: 𝐵 → 𝐸satisfying 𝜋 ∘ 𝜎 = 𝜄. For every vector bundle 𝜉, there is a zero cross-

section𝜊 defined by 𝜊 𝑥 = 0𝑥 ∈ 𝐹𝑥 , 𝑥 ∈ 𝐵. 

The substitution operator, the Lie and exterior derivatives 

Assume that 𝛷 (𝑝 ≥ 1) is a 𝑝-form and 𝑋 is a vector field on a manifold 𝑀. A 

(𝑝 −  1)-form 𝑖(𝑋)𝛷 is defined by 

 𝑖 𝑋 𝛷  𝑋, 𝑋1 ,   ⋯  , 𝑋𝑝−1 =  𝛷 𝑋, 𝑋1 ,   ⋯  , 𝑋𝑝−1 , where𝑋𝑖  ∈  𝒳 𝑀 , 
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or, equivalently, 

 𝑖 𝑋 𝛷  𝑥; 𝜉1 ,   ⋯  , 𝜉𝑝−1 =  𝛷 𝑥; 𝑋 𝑥 , 𝜉1 ,   ⋯  , 𝜉𝑝−1 ,         

where 𝑥 ∈ 𝑀, 𝜉𝑖 ∈ 𝑇𝑥 𝑀 . 

We consider 𝐴𝑝(𝑀)as the module of skew p-linear maps from 𝒳 𝑀  to 𝒮 𝑀 . The 

definition can be extended to 𝐴0(𝑀) by putting𝑖  𝑋 𝑓 = 0,    𝑓 ∈ 𝒮 𝑀  (Gromov and 

Lawson, 1980). If  𝜔 is a one-form, then we get  𝑖 𝑋 𝜔 =   𝜔, 𝑋 . In particular, for a 

gradient 𝛿𝑓, we have 𝑖 𝑋 𝛿𝑓 = 𝑋 𝑓 .  The map 𝑖 𝑋 : 𝐴 𝑀 → 𝐴 𝑀  defined in the 

above way is  called the substitution operator induced by 𝑋. This operator is 

homogeneous of degree −1, and satisfies the following equations 

𝑖 𝑋  𝑓 ⋅  𝛷 + 𝑔 ⋅  𝛹 = 𝑓 ⋅ 𝑖 𝑋 𝛷 + 𝑔 ⋅ 𝑖 𝑋 𝛹  
and 

𝑖 𝑋  𝛷 ∧  𝛹 =  𝑖 𝑋  𝛷 ∧  𝛹  

=  𝑖 𝑋  𝛷 ∧  𝛹 +   −1 𝑝  𝛷 ∧ 𝑖 𝑋 𝛹,    

𝑓, 𝑔 ∈ 𝒮 𝑀 ,    𝛷 ∈  𝐴𝑝 𝑀 , 𝛹 ∈ 𝐴 𝑀 . 

Consequently, 𝑖(𝑋)is an antiderivation for each 𝑋 ∈ 𝒳 𝑀  in the algebra 𝐴(𝑀). If we 

consider a second vector field 𝑌 on M, we have 

𝑖 𝑓 ⋅  𝑋 + 𝑔 ⋅ 𝑌 = 𝑓 ⋅ 𝑖 𝑋 + 𝑔 ⋅ 𝑖 𝑌  and 

𝑖 𝑋 𝑖 𝑌 =  −𝑖 𝑌 𝑖 𝑋    𝑓, 𝑔 ∈ 𝒮 𝑀 . 

Lemma 1. Let 𝛷 ∈ 𝐴𝑝 𝑀  (𝑝 ≥ 1) and 𝑋 ∈ 𝒳 𝑀 . If 𝛷 satisfies 𝑖 𝑋 𝛷 = 0 for every 

𝑋, then 𝛷 = 0. 

Consider a vector field 𝑋 ∈ 𝒳 𝑀  and a p-form 𝛷 ∈ 𝐴𝑝 𝑀  (𝑝 ≥ 1). We define a map 

𝒳 𝑀 × ⋯ × 𝒳 𝑀 → 𝒮 𝑀  by 

 𝑋1 ,⋯  , 𝑋𝑝 ↦ 𝑋  𝛷 𝑋1 ,⋯  , 𝑋𝑝  −  𝛷 𝑋1 , ⋯ ,  𝑋, 𝑋𝑗  ,   ⋯  , 𝑋𝑝 

𝑝

𝑗=1

. 

This map is 𝑝-linear over ℝ and skew-symmetric. Also, the relations 

𝑋 𝑓 ⋅ 𝑔 =  𝑋 𝑓 ⋅ 𝑔 + 𝑓 ⋅ 𝑋 𝑔  

and 

 𝑋, 𝑓 ⋅ 𝑌 =  𝑓 ⋅  𝑋, 𝑌 +  𝑋 𝑓 ⋅ 𝑌,    𝑓, 𝑔 ∈ 𝒮 𝑀  
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indicate that it is 𝑝-linear over 𝒮 𝑀 . Therefore, it defines a 𝑝-form on 𝑀. 

Definition 1. If 𝑋 ∈ 𝒳 𝑀 , then the Lie derivative with respect to 𝑋 is the real linear 

map 𝜃 𝑋 : 𝐴 𝑀 → 𝐴 𝑀  which is homogeneous of degree zero and given by 

 𝜃 𝑋 𝛷  𝑋1 , ⋯ , 𝑋𝑝 = 𝑋  𝛷 𝑋1 ,⋯ , 𝑋𝑝  −  𝛷 𝑋1 ,⋯  ,  𝑋, 𝑋𝑗  ,   ⋯  , 𝑋𝑝 

𝑝

𝑗=1

, 

where 𝛷 ∈ 𝐴𝑝 𝑀 , 𝑝 ≥ 1, 𝑋𝑗 ∈ 𝒳 𝑀 , and 𝜃 𝑋 𝑓 = 𝑋 𝑓 , 𝑓 ∈ 𝒮 𝑀 . 

Proposition 1. The Lie derivative has the following properties: 

(1) 𝜃 𝑋  𝛿𝑓 =  𝛿𝜃 𝑋 𝑓 =  𝛿𝑋 𝑓  

(2) 𝜃 𝑋  𝛷 ∧  𝛹 =  𝜃 𝑋 𝛷 ∧  𝛹 +  𝛷 ∧ 𝜃 𝑋 𝛹                    𝑋, 𝑌 ∈  𝒳 𝑀  

(3) 𝜃  𝑋, 𝑌  =  𝜃 𝑋 𝜃 𝑌 −  𝜃 𝑌 𝜃 𝑋                                       𝛷, 𝛹 ∈ 𝐴(𝑀) 

(4) 𝜃 𝑓 ⋅ 𝑋 =  𝑓 ⋅  𝜃 𝑋 +  𝜇 𝛿𝑓  𝑖 𝑋  

Here 𝜇 is the multiplication operator in 𝐴 𝑀  and 𝜇 𝛷 𝛹 =  𝛷 ∧ 𝛹. 

Proof. From the definition of Lie derivative,  

 𝜃 𝑋 𝛿𝑓, 𝑌 = 𝑋 𝑌 𝑓  −  𝑋, 𝑌  𝑓  

= 𝑌 𝑋 𝑓  =  𝛿(𝑋 𝑓 ), 𝑌 , 𝑌 ∈ 𝒳 𝑀  

Thus, 𝜃 𝑋 𝛿𝑓 = 𝛿𝜃 𝑋 𝑓 = 𝛿𝑋 𝑓  and (1) is proved. 

Consider 𝛷 ∈ 𝐴𝑝 𝑀 , 𝛹 ∈ 𝐴𝑝 𝑀  and we will apply induction method on 𝑝 + 𝑞. If 

𝑝 + 𝑞 = 0, then the derivation property of 𝑋 on functions and (2) are equivalent. Now, let 

(2) be true for 𝑝 + 𝑞 < 𝑘. From definition, we have𝑖  𝑋, 𝑌  = 𝜃 𝑋 𝑖 𝑌 − 𝑖 𝑌 𝜃 𝑋 . 

So, for 𝑝 + 𝑞 = 𝑘, 𝑋, 𝑌 ∈ 𝒳 𝑀 ,  we can expand 𝑖 𝑌 𝜃 𝑋  𝛷 ∧ 𝛹  as follows 

𝑖 𝑌 𝜃 𝑋  𝛷 ∧ 𝛹 = 𝜃 𝑋 𝑖 𝑌  𝛷 ∧ 𝛹 − 𝑖  𝑋, 𝑌   𝛷 ∧ 𝛹  

=  𝜃 𝑋 [𝑖 𝑌 𝛷 ∧ 𝛹 +  −1 𝑝𝛷 ∧ 𝑖 𝑌 𝛹 − 𝑖  𝑋, 𝑌  𝛷

∧ 𝛹 −  −1 𝑝𝛷 ∧ 𝑖  𝑋, 𝑌  𝛹 

= 𝜃 𝑋 𝑖 𝑌 𝛷 ∧ 𝛹 + 𝑖 𝑌 𝛷 ∧ 𝜃 𝑋 𝛹 +  −1 𝑝𝜃 𝑋 𝛷 ∧

𝑖 𝑌 𝛹 +  −1 𝑝𝛷 ∧ 𝜃 𝑋 𝑖 𝑌 𝛹 −  𝑖  𝑋, 𝑌  𝛷 ∧ 𝛹 −

 −1 𝑝𝛷 ∧ 𝑖  𝑋, 𝑌  𝛹. 
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From the inductive hypothesis, we obtain the last equality. By the ant derivation rule for 

𝑖 𝑌  to this relation, we get 

𝑖 𝑌  𝜃 𝑋   𝛷 ∧ 𝛹  = 𝑖 𝑌  𝜃 𝑋 𝛷 ∧ 𝛹 + 𝛷 ∧ 𝜃 𝑋 𝛹 ,   𝑌 ∈ 𝒳 𝑀 , 

which implies that 𝜃 𝑋  𝛷 ∧ 𝛹 = 𝜃 𝑋 𝛷 ∧ 𝛹 + 𝛷 ∧ 𝜃 𝑋 𝛹. Therefore, (2) is proved. 

Since 𝐴(𝑀) is generated as an algebra over ℝ by functions and gradients, both sides of 

(3) are derivations in 𝐴(𝑀). It is sufficient to show that the effect of both sides of (3) on 

functions and gradients is the same. If we apply (3) to functions, then we obtain the 

definition of the Lie product. From (1) we get, 

𝜃  𝑋, 𝑌  𝛿𝑓 =  𝛿  𝑋, 𝑌 𝑓  

                                                    =  𝛿  𝑋 𝑌 𝑓  −  𝑌 𝑋 𝑓    

                                                  =  𝜃 𝑋 𝜃 𝑌 −  𝜃 𝑌 𝜃 𝑋  

Thus, 𝜃  𝑋, 𝑌  = 𝜃 𝑋 𝜃 𝑌 − 𝜃 𝑌 𝜃 𝑋 for 𝛷, 𝛹 ∈ 𝐴(𝑀), and (3) is proved. 

We observe that both sides of (4) are derivations in 𝐴(𝑀). If we apply each side to 

𝑔 ∈ 𝒮 𝑀  and 𝛿𝑔, we obtain𝑓 ⋅ 𝑋 𝑔  and 𝛿 𝑓 ⋅ 𝑋(𝑔) = 𝑓 ⋅ 𝛿 𝑋(𝑔) + 𝛿𝑓 ∧ 𝑋 𝑔  

respectively. Hence (4) is proved.  

Definition 2. Let 𝑋 ∈ 𝒳 𝑀 . If 𝜃 𝑋 =  0, then a differential form 𝛷 is called invariant 

with respect to 𝑋. Since 𝜃 𝑋  is a derivation, the set of differential forms invariant with 

respect to 𝑋 is a subalgebraof 𝐴(𝑀).  

Assume that 𝛷 is a 𝑝-form (𝑝 ≥ 1) on a manifold 𝑀and consider the map 𝒳 𝑀 × ⋯ ×

𝒳 𝑀 → 𝒮 𝑀  given by 

 𝑋0 , ⋯ , 𝑋𝑝 ↦    −1 𝑗

𝑝

𝑗=0

𝑋𝑗  𝛷 𝑋0 ,⋯ , 𝑋 𝑗  , ⋯ , 𝑋𝑝   

                               +   −1 𝑖+𝑗

0≤𝑖<𝑗≤𝑝

𝛷  𝑋𝑖 , 𝑋𝑗  , ⋯ , 𝑋 𝑖 , ⋯ , 𝑋 𝑗 , ⋯ , 𝑋𝑝 . 

If 𝑓, 𝑔 ∈ 𝒮 𝑀 and 𝑋, 𝑌 ∈ 𝒳 𝑀 , then the relations 𝑋 𝑓 ⋅ 𝑔 = 𝑋 𝑓 ⋅ 𝑔 + 𝑓 ⋅ 𝑋 𝑔  and 

 𝑋, 𝑓 ⋅ 𝑌 = 𝑓 ⋅  𝑋, 𝑌 +  𝑋 𝑓 ⋅ 𝑌 imply that this map is (𝑝 + 1)-linear over 𝒮 𝑀 . It 

determines a (𝑝 + 1)-form on 𝑀, because it is skew-symmetric (Hebey, 1996). 

Definition 3. The exterior derivative is the ℝ-linear map 𝛿: 𝐴 𝑀 → 𝐴 𝑀  which is 

defined by 
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𝛿𝛷 𝑋0 ,⋯  , 𝑋𝑝 =   −1 𝑗
𝑝

𝑗=0

𝑋𝑗  𝛷 𝑋0 ,⋯ , 𝑋 𝑗  , ⋯ , 𝑋𝑝   

+   −1 𝑖+𝑗

0≤𝑖<𝑗≤𝑝

𝛷  𝑋𝑖 , 𝑋𝑗  , 𝑋0 , ⋯ , 𝑋 𝑖  , ⋯ , 𝑋 𝑗  , ⋯ , 𝑋𝑝  

𝛷 ∈ 𝐴𝑝 𝑀 ,   𝑝 ≥ 1,    𝑋𝑗 ∈  𝒳 𝑀  

and 

 𝛿𝑓  𝑋 = 𝑋 𝑓 , 𝑓 ∈ 𝒮 𝑀 , 𝑋 ∈ 𝒳 𝑀 . 

The differential form 𝛿𝛷 is called the exterior derivative of 𝛷 and it is homogeneous of 

degree 1 (Holopainen, 1992). If we combine the definition of the exterior derivative with 

that of the Lie derivative, we obtain a second expression for 𝛿𝛷 as follows: 

𝛿𝛷 𝑋0 , ⋯  , 𝑋𝑝 =    −1 𝑗

𝑝

𝑗=0

 𝜃 𝑋𝑗   𝛷 𝑋0 , ⋯ , 𝑋 𝑗  , ⋯ , 𝑋𝑝  

                                                          −   −1 𝑖+𝑗

𝑖<𝑗

𝛷  𝑋𝑖 , 𝑋𝑗  , 𝑋0 , ⋯ , 𝑋 𝑖  , ⋯ , 𝑋 𝑗  , ⋯ , 𝑋𝑝 . 

Proposition 2.  The exterior derivative satisfies the following properties: 

(1)    𝜃 𝑋 =  𝑖 𝑋 𝛿 +  𝛿 𝑖 𝑋 ,         𝑋 ∈  𝒳 𝑀  

(2) 𝛿2 = 0 

(3) 𝛿 𝜃 𝑋 =  𝜃 𝑋 𝛿. 

Proof. Let 𝑋 ∈ 𝒳 𝑀 . From the definition of exterior derivative we easily get 𝜃 𝑋 =

𝑖 𝑋 𝛿 + 𝛿𝑖 𝑋  which proves (1). 𝛿2 is a derivation, because 𝛿 is an antiderivation. 

Assume that 𝑓 ∈ 𝒮 𝑀 . It is sufficient to show that 𝛿2𝑓 = 0, 𝛿2 𝛿𝑓 = 0 because 𝐴 𝑀  

is generated by functions and gradients and is an ℝ-algebra.  

Consequently, we have 

 𝛿2𝑓  𝑋, 𝑌 =  𝑋  𝛿𝑓, 𝑌  −  𝑌  𝛿𝑓, 𝑋  −  𝛿𝑓,  𝑋, 𝑌   

=   𝑋 𝑌 𝑓  −  𝑌 𝑋 𝑓  −  𝑋, 𝑌 𝑓 =    0, 𝑋, 𝑌 ∈ 𝒳 𝑀 . 

That is, 𝛿2𝑓 = 0. So, it follows that 𝛿2𝑓 𝛿𝑓 = 0. Hence (2) is proved.  
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If we use (2) and apply 𝛿 to both sides of (1), we easily get 𝛿 𝜃 𝑋 =  𝜃 𝑋 𝛿. Hence (3) 

is proved. 

Definition 4. If 𝑓 is a smooth function on 𝑀, then the carrier (or support) of 

𝑓 is the closure of the set  𝑥 ∈ 𝑀: 𝑓 𝑥 ≠ 0 .  This set is denoted by𝑐𝑎𝑟𝑟 𝑓. 

The carrier (or support) of a cross-section  𝜎  is the set defined by  

𝑐𝑎𝑟𝑟 𝜎 = 𝑐𝑙𝑜𝑠𝑢𝑟𝑒  𝑥 ∈ 𝐵: 𝜎 𝑥 ≠ 0𝑥 . 

Definition 5.  Let 𝛷 be a differential form on 𝑀, then 𝛷 is said to have compact carrier, 

if 𝑐𝑎𝑟𝑟 𝛷 is compact. The set of differential forms on 𝑀with compact carrier is denoted 

by 𝐴𝑐 𝑀 . 

Definition 6. The partial exterior derivative with respect to 𝑀is the linear map 

𝛿𝑀 : 𝐴 𝑀 × 𝑁 → 𝐴 𝑀 × 𝑁 given by 

 𝛿𝑀Ω  𝑍0 , ⋯ , 𝑍𝑟 =    −1 𝑗
𝑟

𝑗=0

𝑍𝑗
𝑀  Ω 𝑍0 , ⋯ , 𝑍 𝑗 , ⋯ , 𝑍𝑟   

                                          +   −1 𝑖+𝑗

0≤𝑖<𝑗≤𝑝

Ω( Zi  , Zj M
 , 𝑍0 , ⋯ , 𝑍 𝑖 , ⋯ , 𝑍 𝑗  , ⋯ , 𝑍𝑟) 

The partial exterior derivative with respect to𝑁is given by 

 𝛿𝑁Ω  𝑍0 , ⋯ , 𝑍𝑟 =    −1 𝑗
𝑟

𝑗=0

𝑍𝑗
𝑁  Ω 𝑍0 , ⋯ , 𝑍 𝑗 , ⋯ , 𝑍𝑟   

                                             +   −1 𝑖+𝑗

0≤𝑖<𝑗≤𝑝

Ω( Zi  , Zj 𝑁
 , 𝑍0 , ⋯ , 𝑍 𝑖 , ⋯ , 𝑍 𝑗  , ⋯ , 𝑍𝑟),  

Ω ∈  𝐴𝑟 𝑀 × 𝑁 . 

Both the partial exterior derivatives are homogeneous of degree 1. 

Smooth family of cross-sections 

Suppose that 𝜉 =  𝐸, 𝜋, 𝑀, 𝐹  is a vector bundle and 𝜎: ℝ → 𝑆𝑒𝑐 𝜉 is a set map; that is, 

𝜎assigns a cross-section 𝜎𝑖of 𝜉 to every real number 𝑡 ∈ ℝ. If a map ℝ × 𝑀 → 𝐸given by 

𝜎 𝑡, 𝑥 =  𝜎𝑖 𝑥  is smooth, then the map is called a smooth family of cross-sections 

(Yau, 1976). The set of smooth families of cross-sections in 𝜉 is denoted by {𝑆𝑒𝑐𝑡  𝜉}𝑡 ∈ℝ. 

For each fixed 𝑥 ∈ 𝑀, each smooth family determines a smooth map 𝜎𝑥 : ℝ → 𝐹𝑥  given by 

𝜎𝑥 𝑡 = 𝜎 𝑡, 𝑥 . 
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Definition 7. For a smooth family of cross-sections 𝜎in 𝜉, the derivative of 𝜎isthe 

smooth family 𝜎  given by 

𝜎  𝑡, 𝑥 = lim
𝑠 →0

𝜎 𝑡 + 𝑠, 𝑥 −  𝜎 𝑡, 𝑥 

𝑠
 

=  𝑑

𝑑𝑠
𝜎𝑥  

𝑠=𝑡
 . 

 

For 𝑎 ∈ ℝ, the integral of 𝜎 is the smooth family ∫ 𝜎
𝑎

 given by 

 ∫ 𝜎
𝑎

  𝑡, 𝑥 =  ∫ 𝜎𝑥
𝑡

𝑎
 𝑠  𝑑𝑠. 

The definite integral ∫ 𝜎
𝑏

𝑎
 is the cross-section in 𝜉 given by  

 ∫ 𝜎
𝑏

𝑎
  𝑥 =  ∫ 𝜎𝑥

𝑏

𝑎
 𝑡  𝑑𝑡. 

Using the fundamental theorem of calculus, we obtain the following relations for a 

smooth family 𝜎: 

 𝜎 𝑡

𝑏

𝑎

 𝑑𝑡 =  𝜎𝑏 − 𝜎𝑎  ,               𝑎, 𝑏 ∈ ℝ 

and  

 ∫ 𝜎
𝑎

 
∙
 𝑡, 𝑥 =  𝜎 𝑡, 𝑥 ,                  𝑡 ∈  ℝ,   𝑥 ∈ 𝑀. 

For the vector bundle ⋀𝑝𝑇𝑀
∗ , a smooth family of 𝑝-forms on a manifold 𝑀 is a smooth 

family of cross-sections in ⋀𝑝𝑇𝑀
∗  (Schoen and Yau, 1979). The set of smooth families of 

𝑝-forms on 𝑀 is denoted by  𝐴𝑡
𝑝 𝑀  

𝑡 ∈ ℝ
 and  𝐴𝑡

𝑝 𝑀  
𝑡 ∈ ℝ

= 𝐴0,𝑝 ℝ × 𝑀 . 

Consequently, a smooth family of 𝑝-forms on 𝑀 is homogeneous of bidegree  0, 𝑝  and a 

differential form on ℝ × 𝑀. 

Proposition 3. Let 𝑀 and 𝑁 be two manifolds. If𝜑: 𝑀 → 𝑁 is a smooth map, and 𝛷 is a 

smooth family of 𝑝-forms on 𝑁, then 

  𝜄 × 𝜑 ∗ 𝛷 ∙ =   𝜄 × 𝜑 ∗𝛷  

Proof. Let 𝑡 ∈ ℝ, 𝑦 ∈ 𝑁. Suppose that 𝛷𝑦 : ℝ → ⋀𝑝𝑇𝑦(𝑁)∗ is the smooth map given by 

𝛷𝑦 𝑡 =  𝛷 𝑡, 𝑦 . 

Then, ⋀𝑝(𝑑𝜑)𝑥
∗ ∘ 𝛷𝜑(𝑥) ∶ ℝ → ⋀𝑝𝑇𝑥(𝑀)∗ for 𝑥 ∈ 𝑀 and  
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  𝜄 × 𝜑 ∗ 𝛷 𝑥 = ⋀𝑝(𝑑𝜑)𝑥
∗ ∘ 𝛷𝜑(𝑥). 

Since ⋀𝑝(𝑑𝜑)𝑥
∗  is a linear map, it follows that 

𝑑

𝑑𝑠
  𝜄 × 𝜑 ∗ 𝛷 𝑥 =  ⋀𝑝(𝑑𝜑)𝑥

∗  ∘  
𝑑

𝑑𝑠
𝛷𝜑(𝑥). 

That is, 

  𝜄 × 𝜑 ∗ 𝛷 𝑥
∙ =  ⋀𝑝(𝑑𝜑)𝑥

∗  ∘  𝛷 𝜑(𝑥) =   𝜄 × 𝜑 ∗ 𝛷 𝑥  . 

Hence,   𝜄 × 𝜑 ∗ 𝛷 ∙ =   𝜄 × 𝜑 ∗𝛷 , which completes the proof. 

Theorem 1. If 𝑋 ∈ 𝒳 𝑀  and 𝛷is a smooth family of 𝑝-forms on 𝑀, then 

𝛿 ∫ 𝛷𝑡
𝑏

𝑎
 𝑑𝑡 = ∫ 𝛿𝛷𝑡

𝑏

𝑎
𝑑𝑡. 

Proof.  If we use an atlas on 𝑀 andreduce to the case 𝑀, then it will be a vector space E. 

As a result, we have 

𝐴0,𝑝 ℝ × 𝐸 = 𝒮 ℝ × 𝐸; ⋀𝑝𝐸∗ . 

Let 𝑎 ∈ ⋀𝑝𝐸∗, 𝑓 ∈ 𝒮 ℝ × 𝐸 . Since both sides of 𝛿 ∫ 𝛷𝑡
𝑏

𝑎
 𝑑𝑡 = ∫ 𝛿𝛷𝑡

𝑏

𝑎
𝑑𝑡 are linear we 

may restrict to the case 𝛷 𝑡, 𝑥 = 𝑓 𝑡, 𝑥 𝑎. In the circumstance,  𝛿 ∫ 𝛷𝑡
𝑏

𝑎
 𝑑𝑡 = ∫ 𝛿𝛷𝑡

𝑏

𝑎
𝑑𝑡 

is equivalent to 

  
𝜕

𝜕𝑒𝜈
 𝑓 𝑡, 𝑥 

𝑏

𝑎

 𝑑𝑡 

𝑛

𝜈=1

𝑒∗𝜈 ∧ 𝑎 =    
𝜕𝑓

𝜕𝑒𝜈

𝑏

𝑎

 𝑡, 𝑥 𝑑𝑡 

𝜈

𝑒∗𝜈 ∧ 𝑎, 

where 𝑒∗𝜈 , 𝑒𝜈 is a pair of dual bases for 𝐸∗, 𝐸 and  
𝜕

𝜕𝑒𝜈  denotes the partial derivative in the 

𝑒𝜈  direction.  Furthermore, it is evident that 𝛿 ∫ 𝛷𝑡
𝑏

𝑎
𝑑𝑡 = ∫ 𝛿𝛷𝑡

𝑏

𝑎
𝑑𝑡. This completes the 

proof. 

If 𝑀is a manifold and Ω ∈ 𝐴𝑝(ℝ × 𝑀), then Ω can be uniquely decomposed in the form 

Ω = 𝛷 + 𝛹, where 𝛷 ∈ 𝐴0,𝑝 ℝ × 𝑀 , 𝛹 ∈ 𝐴1,𝑝−1 ℝ × 𝑀 . 

Assume that the smooth family of 𝑝-forms 𝛷, which satisfies 𝛷𝑡 =  𝑗𝑡
∗𝛷 =  𝑗𝑡

∗Ω. This 

smooth family will be denoted by 𝑗∗Ω  and (𝑗∗Ω)𝑡 = 𝑗𝑡
∗Ω.By integrating this family, we 

obtain the following differential form 𝐼𝑎
𝑏Ω =  ∫ (𝑗𝑡

∗Ω)
b

a
𝑑𝑡 on 𝑀. The assignment Ω ↦ 𝐼𝑎

𝑏Ω 

defines a linear map 𝐼𝑎
𝑏 : 𝐴 ℝ × 𝑀 → 𝐴(𝑀) which is homogeneous of degree zero 

(Wang and Zhang, 2011). 
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Lemma 2. Let 𝑇denotes the vector field 
𝑑

𝑑𝑡
 on ℝ and Ω ∈ 𝐴 ℝ × 𝑀 ; consider it as a 

vector field on ℝ × 𝑀. Then 

(𝑗𝑡
∗Ω)𝑠

∙ = 𝑗𝑠
∗ 𝜃 𝑇 Ω,   Ω ∈ 𝐴 ℝ × 𝑀 . 

Proof. Let 𝑎 ∈ ⋀𝑝𝐸∗. Assume that 𝑀is a vector space 𝐸and that Ω ∈ 𝐴0,𝑝 ℝ × 𝐸 is of 

the form 

𝛺 𝑡, 𝑥 =  𝑓 𝑡, 𝑥 𝑎 for 𝑓 ∈ 𝒮 ℝ × 𝐸 . 

Then  

 𝑗𝑡
∗Ω 𝑠

∙  𝑥 = 𝑓 ′  𝑠, 𝑥;
𝑑

𝑑𝑡
 𝑎 

 𝜃 𝑇 Ω  𝑠, 𝑥 =  𝑗𝑡
∗𝜃 𝑇 Ω  𝑥 . 

Thus, (𝑗𝑡
∗Ω)𝑠

∙ =  𝑗𝑠
∗ 𝜃 𝑇 Ω, where Ω ∈ 𝐴 ℝ × 𝑀 . 

Assume that 𝑋 be a vector field on 𝑀 which generates a one-parameter group of 

diffeomorphisms 𝜑: ℝ × 𝑀 → 𝑀. Then, 𝜑∗𝛷 ∈ 𝐴 ℝ × 𝑀  and 𝜑∗𝜃 𝑋 𝛷 ∈ 𝐴 ℝ ×

𝑀 for 𝛷 ∈ 𝐴 𝑀 . If 𝜑𝑡 ∶ 𝑀 → 𝑀 is the map 𝜑𝑡 𝑥 = 𝜑 𝑡, 𝑥 , then the corresponding 

smooth families of differential forms on 𝑀are given by 

 𝑗∗𝜑∗𝛷 𝑡 =  𝜑𝑡
∗ 𝛷 and  𝑗∗𝜑∗𝜃(𝑋)𝛷 𝑡 =  𝜑𝑡

∗𝜃 𝑋 𝛷. 

Proposition 4. If 𝛷 ∈ 𝐴𝑝 𝑀 , then the family 𝜑𝑡
∗𝛷 satisfies the following relation: 

𝜑𝑡
∗𝛷 −  𝛷 =   (𝜑𝑠

∗𝜃 𝑋 𝛷) 𝑑𝑠.

𝑡

0

 

In particular, (𝜑𝑡
∗𝛷)0

∙ = 𝜃 𝑋 𝛷. 

Proof.  It is evident that  𝑇 ∼ 𝑋. It implies that 𝜑∗𝜃 𝑋 =  𝜃 𝑇 𝜑∗. Hence 

 (𝜑𝑠
∗𝜃 𝑋 𝛷) 𝑑𝑠

𝑡

0

=   (𝑗𝑠
∗𝜃 𝑇 𝛷) 𝑑𝑠

𝑡

0

 

=  𝐼0
𝑡𝜃 𝑋 𝜑∗𝛷 

=   𝑗𝑡
∗𝜑∗𝛷 −  𝑗0

∗𝜑∗𝛷  

=  𝜑𝑡
∗𝛷 −  𝛷. 
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Using the fundamental theorem of calculus, we obtain the following relations for a 

smooth family 𝜎: 

 𝜎 𝑡

𝑏

𝑎

 𝑑𝑡 =  𝜎𝑏 − 𝜎𝑎  ,               𝑎, 𝑏 ∈ ℝ 

and 

 ∫ 𝜎
𝑎

 
∙
 𝑡, 𝑥 =  𝜎 𝑡, 𝑥 ,                  𝑡 ∈  ℝ,   𝑥 ∈ 𝑀. 

From the above relations, we get  

𝜑𝑠
∗𝜃 𝑋 𝛷 =  (𝜑𝑡

∗𝛷 −  𝛷)𝑠
∙ =  (𝜑𝑡

∗𝛷)𝑠
∙ . 

Thus, 𝜃 𝑋 𝛷 =  𝜑0
∗  𝜃 𝑋 𝛷 =  (𝜑𝑡

∗𝛷)0
∙  which completes the proof. 

Oriented n-manifold 

For an oriented 𝑛-manifold 𝑀a graded 𝛿-stable ideal 𝐴𝑀 ℝ × 𝑀 ⊂ 𝐴(ℝ × 𝑀)is defined 

as follows: 

If 𝑐𝑎𝑟𝑟 𝛷 ∩ (𝐾 × 𝑀) is compact for all closed, finite intervals K, then 𝛷 ∈ 𝐴𝑀(ℝ × 𝑀). 

Assume that ℝ is oriented by the one-form 𝛿𝑡and ℝ × 𝑀 is the product orientation. 

Consider 𝐼 as a finite open interval  𝑎, 𝑏 ⊂ ℝand let 𝑗𝑎 , 𝑗𝑏 ∶  𝑀 → ℝ × 𝑀 be the 

inclusions opposite 𝑎 and 𝑏. Then, 𝑐𝑎𝑟𝑟 Ω ∩ (𝐼 × 𝑀)                       is compact for Ω ∈ 𝐴𝑀
𝑛+1 ℝ × 𝑀  

(Cheng and Yau, 1975). Consequently, we can form the integral ∫𝐼×𝑀Ω. 

Lemma 3. If Ω ∈ 𝐴𝑀
𝑛 + 1 ℝ × 𝑀 , then ∫𝐼 ×𝑀Ω = ∫𝑀𝐼𝑎

𝑏  𝑖 𝑇 Ω. 

Proof.  Let 𝐿be a compact subset of ℝ𝑛  and let 𝑀 be an oriented 𝑛-manifold. By using a 

finite partition of unity in 𝑀, wereduce it to the case 𝑀 = ℝ𝑛and 𝑐𝑎𝑟𝑟 Ω ⊂ ℝ × 𝐿. 

Assume that  𝑒1,⋯ , 𝑒𝑛  is a positive basis of ℝ𝑛 .Then 𝛿𝑡 ∧ 𝑒∗1 ∧ ⋯ ∧ 𝑒∗𝑛  isa positive 

(𝑛 + 1)-form in ℝ × ℝ𝑛 . If𝑓 ∈ 𝒮 ℝ𝑛+1  and 𝑐𝑎𝑟𝑟 𝑓 ⊂ ℝ × 𝐿, then we obtain 

Ω = 𝑓 ∙ 𝛿𝑡 ∧ 𝑒∗1 ∧ ⋯ ∧ 𝑒∗𝑛 . 

Also, we get 𝑖 𝑇 Ω = 𝑓 ∙ 𝑒∗1 ∧ ⋯ ∧ 𝑒∗𝑛  and it follows that 

 𝐼𝑎
𝑏  𝑖 𝑇 Ω  𝑥 =  ∫ 𝑓(𝑡, 𝑥

𝑏

𝑎
)𝑑𝑡 𝑒∗1 ∧ ⋯ ∧ 𝑒∗𝑛 . 

Thus,                 ∫ℝ𝑛  𝐼𝑎
𝑏  𝑖 𝑇 Ω =  ∫ℝ𝑛 ∫ 𝑓(𝑡, 𝑥

𝑏

𝑎
) 𝑑𝑡 𝑑𝑥1  ⋯ 𝑑𝑥𝑛  

=  ∫𝐼 ×ℝ𝑛Ω. 

Hence, ∫𝐼×𝑀Ω =  ∫𝑀𝐼𝑎
𝑏  𝑖 𝑇 Ω for Ω ∈ 𝐴𝑀

𝑛 + 1 ℝ × 𝑀  which completes the proof. 
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Theorem 2.  If 𝑀 is an oriented 𝑛-manifold and 𝛷 ∈ 𝐴𝑀
𝑛  ℝ × 𝑀 , then 

∫𝐼×𝑀𝛿𝛷 =  ∫𝑀𝑗𝑏
∗𝛷 − ∫𝑀𝑗𝑎

∗𝛷. 

Proof. Let 𝑀 be an oriented 𝑛-manifold and 𝛷 ∈ 𝐴𝑀
𝑛  ℝ × 𝑀 . Assume that the vector 

field 𝑇 on ℝ × 𝑀given by 

𝑇 𝑠, 𝑥 =  
𝑑

𝑑𝑡
, 0 , 𝑠 ∈ ℝ, 𝑥 ∈ 𝑀. 

The operator 𝐼𝑎
𝑏 ∘ 𝑖 𝑇  is determined by 𝑇 and given by 

𝐼𝑎
𝑏 ∘ 𝑖 𝑇 : 𝐴𝑝 ℝ × 𝑀 → 𝐴𝑝−1 𝑀 . 

The above operator evidently restricts to the following operator 

𝐼𝑎
𝑏 ∘ 𝑖 𝑇 : 𝐴𝑀

𝑝  ℝ × 𝑀 → 𝐴𝐶
𝑝−1 𝑀 . 

We know that if Ω ∈ 𝐴𝑀
𝑛 + 1 ℝ × 𝑀 , then ∫𝐼×𝑀Ω = ∫𝑀𝐼𝑎

𝑏  𝑖 𝑇 Ω. Consequently, we 

obtain 

∫𝐼×ℝ𝑛𝛿𝛷 =  ∫𝑀  𝐼𝑎
𝑏  𝑖 𝑇  𝛿𝛷. 

It follows that 

𝐼𝑎
𝑏  𝑖 𝑇 𝛿𝛷 = 𝑗𝑏

∗𝛷 − 𝑗𝑎
∗𝛷 −  𝛿𝐼𝑎

𝑏  𝑖 𝑇 𝛷. 

Since 𝛷 ∈ 𝐴𝑀
𝑛  ℝ × 𝑀  and  𝐼𝑎

𝑏 𝑖 𝑇 𝛷 ∈ 𝐴𝐶
𝑛−1 𝑀 , so we have 

∫𝑀𝛿𝐼𝑎
𝑏  𝑖 𝑇 𝛷 = 0. 

Thus, ∫𝐼×𝑀𝛿𝛷 = ∫𝑀𝑗𝑏
∗𝛷 − ∫𝑀𝑗𝑎

∗𝛷 which completes the proof. 

Theorem 3. Let 𝑈 be a neighbourhood of the closed unit-ball 𝐵  and 𝛷 ∈ 𝐴𝑛 𝑈 . Then, 

∫𝐵𝛿𝛷 =  ∫𝑆𝑖
∗𝛷                          (i) 

Proof. Assume that 𝐸 is a vector space and𝑝be a smooth function in E such that 

𝑝 𝑥 = 1,  𝑥 ≤ 1 and 𝑐𝑎𝑟𝑟 𝑝 ⊂ 𝑈. 

If we replace 𝛷 by 𝑝 ⋅ 𝛷, then either side of (i) will not be changed.Since 𝑝 ⋅ 𝛷 ∈ 𝐴𝑐
𝑛 𝐸 , 

so we may assume that 𝛷 ∈ 𝐴𝑐
𝑛 𝐸 . 

Again, consider 𝑞 as a smooth function in 𝐸such that 

𝑞 𝑥 = 1,  𝑥 ≤
1

4
;  𝑞 𝑥 =  0,  𝑥 ≥

1

2
. 
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It follows that 𝑖∗ 1 − 𝑞 𝛷 = 𝑖∗𝛷. Furthermore, since 𝑞 ⋅ 𝛷 ∈ 𝐴𝑐
𝑛 𝐵 , it is obvious that 

∫𝐵𝛿𝛷 = ∫𝐵𝛿  1 − 𝑞 ⋅ 𝛷 + ∫𝐵𝛿 𝑞 ⋅ 𝛷 = ∫𝐵𝛿  1 − 𝑞 ⋅ 𝛷 . 

Therefore, if we replace 𝛷 by  1 − 𝑞 ⋅ 𝛷, neither side of (i) will be changed; that is, it 

will be sufficient to consider the case  

𝛷 𝑥 = 0,  𝑥 ≤
1

4
. 

Thus, we have ∫𝐵𝛿𝛷 = ∫𝐴𝛿𝛷, 𝐴 =  𝑥 ∶  
1

4
<  𝑥 < 1 . Assume that the diffeomorphism 

𝛼: ℝ+ × 𝑆 → 𝐸 −  0  given by 

𝛼 𝑡, 𝑥 = 𝑡𝑥   𝑡 ∈ ℝ+, 𝑥 ∈ 𝑆 . 

Since 𝛼 preserves orientations, setting 𝐼 =  
1

4
, 1 , we obtain  

∫𝐵𝛿𝛷 =  ∫𝐴𝛿𝛷 =  ∫𝐼×𝑆𝛼
∗𝛿𝛷 =  ∫𝐼×𝑆𝛿 𝛼

∗𝛷 . 

If 𝑀 is an oriented 𝑛-manifold and 𝛷 ∈ 𝐴𝑀
𝑛  ℝ × 𝑀 , then 

∫𝐼×𝑀𝛿𝛷 = ∫𝑀𝑗𝑏
∗𝛷 − ∫𝑀𝑗𝑎

∗𝛷. 

Also, since 𝑖 = 𝛼 ∘ 𝑗1 and  𝑗1/4
∗ 𝛼∗𝛷 = 0, we get 

                  ∫𝐵𝛿𝛷 =  ∫𝑆𝑗1
∗𝛼∗𝛷 − ∫𝑆𝑗1/4

∗ 𝛼∗𝛷 

=  ∫𝑆𝑖
∗𝛷. 

Thus, ∫𝐵  𝛿𝛷 = ∫𝑆𝑖
∗𝛷 and the theorem is proved. 
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