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Abstract

Some basic properties of smooth families of differential forms and oriented n-
manifolds are developed in this paper. The module of skew p-linear maps A? (M) from
X(M)to S(M) is extended to A°(M) by puttingi(X)f =0,f € S(M). The set of
smooth families of p-forms {A? (M)}tER on M is the set of smooth families of cross-
sections in the vector bundle APTy; and {A? (M)}tem = A% (R x M). Every smooth

family of p-forms on M is homogeneous of bidegree (0, p) and has a differential form on
R X M. For a gradient§f and one-form w, we have i(X)d6f = X(f) and i(X)w = (w, X)
respectively. Finally, a graded &-stable ideal Ay (R x M) c A(R x M) is defined for an
oriented n-manifold M and it is shown that [, , 6® = [, j;®— [, ja® for ® €

m(RxM)and [,8¢ = [ i*® for & € A™(V).

Keywords: Manifolds, vector bundle, smooth function, differential form, skew p-
linear maps.

Introduction

Let {(Uy,uy) : a € I} be an atlas for a topological manifold M. Let U,, Uy be
two neighbourhoods such that U,z = U, UUg # @. Then, a homeomorphism
Ugp Uy (Ugp) = Uy (Ugg) is defined by uqp = u, o up ' This map is known as
the identification map for U, and Uz (Bishop and Crittenden, 1964). Also,
Uy o Ugg =Uyg N Ug(Ugpy)and  ug, (x) =x, x€u,(U,). If all the
identification maps of an atlas {(U,,u,)} are smooth, then the atlas

{(Uy,uy)}is called smooth (Hoffman and Spruck, 1974). Two smooth atlases
{(U,,uy)} and {(V;,v;)} are said to be equivalent if all the maps

vio Uz ' ug (U NV) = v (Ug NVY)

and their inverses are smooth. Every smooth structure on M is an
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equivalence class of smooth atlases on M and a topological manifold with a
smooth structure is called a smooth manifold (Olum, 1953).

Consider two manifolds M, N and let ¢: M — Nbe a continuous map. Assume
that {(U,,u,)} and {(V;,v;,)} are atlases for M and Nrespectively. Then ¢
defines continuous maps ¢@;, : u, (U, N @~ (V) - v;(V;) by

Pia = Vo @ o ug .

If the maps ¢;, are smooth, then ¢:M — Nis said to be smooth. This
definition does not depend on the choice of atlases for Mand N. Also,
uo@:M— P is smooth if the maps ¢:M - N and u:N — Pare smooth
(Narasimhan, 1968). The set of smooth maps from Mto Nis denoted by
S(M;N). If f and gare two smooth functions on a manifold M, then smooth
functions Af + ug and f gare defined as follows

Af + pg)(x) = Af(x) + pug(x), ALu€eER
(fg)(x) = f(x) g(x), x € M.

These operations relate the set of smooth functions on M to an algebra over R and
this is denoted by S(M). Assume that {U,} is a locally finite family of open sets
of M, and let f, € (M) satisfy the condition carr f, < U,. Then, there is a
neighbourhood V(a) which meets only finitely many of the U, for each a€
M(Block and Weinberger, 1999). Consequently, Y, f, is a finite sum in this
neighbourhood and a smooth function fon Mis defined as follows

fG) =) fu)x €M,

Let Ty be a tangent bundle, then a vector field X on a manifold Mis a cross-
section (Kobayashi and Nomizu, 1963) in Ty. Therefore, a tangent vector X(x) is
assigned to every point x € M by a vector field Xsuch that the map M - Ty, is
smooth. A module over the ring (M) is formed by the vector fields on M and
isdenoted by X'(M). Let & be a vector bundle. A cross-sectionagin & is a smooth
map o: B — Esatisfying m o ¢ = 1. For every vector bundle &, there is a zero cross-
sectiono defined by o(x) = 0, € F,,x € B.

The substitution operator, the Lie and exterior derivatives

Assume that @ (p = 1) is a p-form and X is a vector field on a manifold M. A
(p — D-form i(X)@ is defined by

(XD)(X, Xy, - ,Xp_1) = P(X, Xy, - ,X,_1), whereX; € X(M),
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or, equivalently,
(XD (x; &, - ,&p1) = P(6X(), &1, - L, Ep-1),
where x € M, &; € T, (M).

We consider AP (M)as the module of skew p-linear maps from X(M)to S(M). The
definition can be extended to A°(M) by puttingi (X)f =0, f € S(M) (Gromov and
Lawson, 1980). If w is a one-form, then we get i(X)w = (w, X). In particular, for a
gradient 6f, we have i(X)5f = X(f). The map i(X):A(M) » A(M) defined in the
above way is called the substitution operator induced by X. This operator is
homogeneous of degree —1, and satisfies the following equations

iXf - @2+g -P)=f -iXN)DP+g -iXHY¥
and

X))@ AY) = i(X)(@ AY)
= iX)D AY+ (1P D AIX)Y,
f.gES(M), ® € AP(M), ¥ €A(M).

Consequently, i(X)is an antiderivation for each X € X (M) in the algebra A(M). If we
consider a second vector field Y on M, we have

i(f X +g -Y)=f-iX)+g -i(Y)and
i(X)i(Y) = —i(V)i(X) f.g €SM).

Lemmal. Let® € AP(M) (p = 1) and X € X (M). If & satisfies i(X)® = 0 for every
X,then® = 0.

Consider a vector field X € X (M) and a p-form @ € AP (M) (p = 1). We define a map
X(M) X -+ X X (M) - §(M) by

(le... ;Xp) Hx(¢(X1,... 'Xp))_ i(p(xl,...’[x, X]], ,Xp)-

This map is p-linear over R and skew-symmetric. Also, the relations

X(f -9)=X(f)-g+f -X(9)

and
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indicate that it is p-linear over S (M). Therefore, it defines a p-form on M.

Definition 1. If X € X' (M), then the Lie derivative with respect to X is the real linear
map 6(X): A(M) — A(M) which is homogeneous of degree zero and given by

p
OCOD)(Xy, -+, X, ) = X (@, ,Xp))—ZGJ(Xl,--- (xx] X))
j=1

where @ € AP (M),p = 1,X; € X (M), and 8(X)f = X(f), f € S(M).

Proposition 1. The Lie derivative has the following properties:
(1) 6(X) 6f = 66(X)f = 6X(f)
(2) 6X)(@ AP)= 0X)P A¥ + @ AOX)¥W XY € X(M)
) 6([X,Y]) = 6(X)8(Y) — 6(Y)6(X) ¥ € A(M)
@) 6(f -X) = f - 60X+ u(6f) i(X)

Here u is the multiplication operator in A(M) and u(@)¥ = ® AWP.

Proof. From the definition of Lie derivative,
(0X)8f,Y) = X(Y () — X, YI(f)
=Y(X(f) =(6X (. Y),Y € X (M)
Thus, 8(X)6f = 66(X)f = 6X(f) and (1) is proved.

Consider @ € AP(M),¥ € AP(M) and we will apply induction method on p + q. If
p + q = 0, then the derivation property of X on functions and (2) are equivalent. Now, let
(2) be true for p + q < k. From definition, we havei([X,Y]) = 6(X)i(Y) — i(Y)6(X).
So,forp+q =k, X,Y € X(M), we can expand i(Y)O(X)(® A ¥) as follows

i(NOX)(@AY) = 0X)i(V)(@AY) —i([X,Y])(@ AWP)
= 0[NP AY + (—1DPD AI(VY — i([X, Y]
AP — (=DPDAI([X, YDY

=0X)INPAY +i(V)DPAOX)Y + (—1)PO(X)D A
iNY + (—1D)PDAOX)INY — i([X,YDPAY —
(—1)P® Ai([X, YDY.
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From the inductive hypothesis, we obtain the last equality. By the ant derivation rule for
i(Y) to this relation, we get

iV)OX)(PAY) =i(V[OX)PAY +DAOIX)Y], Y € X(M),
which implies that 0 (X)(@ A¥P) = 0(X)P AW + & A B(X)¥. Therefore, (2) is proved.
Since A(M) is generated as an algebra over R by functions and gradients, both sides of
(3) are derivations in A(M). It is sufficient to show that the effect of both sides of (3) on

functions and gradients is the same. If we apply (3) to functions, then we obtain the
definition of the Lie product. From (1) we get,

01X, YDéf = 6(1X,YIf)
= 5(x(x(nN) - Y(x(N))
= 60(X)0(Y) - 8(Y)0(X)
Thus, 6([X,Y]) = 8(X)0(Y) — 0(Y)O(X)for @, ¥ € A(M), and (3) is proved.

We observe that both sides of (4) are derivations in A(M). If we apply each side to
gE€SM) and 6g, we obtainf-X(g) and 6(f - X(g9)) =f -6(X(g)) +6f AX(g)
respectively. Hence (4) is proved.

Definition 2. Let X € X (M). If 6(X) = 0, then a differential form @ is called invariant
with respect to X. Since 6(X) is a derivation, the set of differential forms invariant with
respect to X is a subalgebraof A(M).

Assume that @ is a p-form (p = 1) on a manifold Mand consider the map X (M) X --- X
X (M) — §(M) given by

p
(XO"" 'Xp) - Z(_l)jxj (‘p(Xo"" ’)?j S 'Xp))
j=0

+ Z (- d)([Xi’Xj]"" X, 'Xj"" !Xp)-
0<i<j <p
If f,g € S(M)and X,Y € X (M), then the relations X(f - g) = X(f)-g+ f - X(g) and
[X,f-Y]=f-[X,Y]+ X(f) Y imply that this map is (p + 1)-linear over S(M). It
determines a (p + 1)-form on M, because it is skew-symmetric (Hebey, 1996).

Definition 3. The exterior derivative is the R-linear map §: A(M) - A(M) which is
defined by
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5¢(X0;"' ,Xp) = Z(_l)j X] (¢>(X0,--- ’)?j e ,Xp))
=0

4+ Z (-1 ¢’([Xi;X'].X0 RIS ’)?]_ e !Xp)
0<i<j<p

o eAP(M), p=1, X; € X(M)
and
X)) =X(f),f € S(M), X € X(M).

The differential form 6@ is called the exterior derivative of @ and it is homogeneous of
degree 1 (Holopainen, 1992). If we combine the definition of the exterior derivative with
that of the Lie derivative, we obtain a second expression for §¢ as follows:

P
6<D(X0,--- ,Xp) = Z(_l)j (9(}(}.))(1)()(0’... )?] ,Xp)
j=0

— Z(_l)iﬂ' (p([Xi'Xj]'XO o, K ’)?j e 'Xp)'
i<j
Proposition 2. The exterior derivative satisfies the following properties:
1) X)) =iX)é+ i(X), X € XM)
(2 6%2=0
(3) 6 6(X) = 6(X)4.

Proof. Let X € X (M). From the definition of exterior derivative we easily get 0(X) =
i(X)8 + 8i(X) which proves (1). 82 is a derivation, because & is an antiderivation.
Assume that f € S(M). It is sufficient to show that §2f = 0,52(5f) = 0 because A(M)
is generated by functions and gradients and is an R-algebra.

Consequently, we have
(&2F)X,Y) = XUSF,Y)) — YUSF, X)) — (Sf, [X,Y])
= X(y(N)-v(x(N) - X, Ylf = 0, X,y € X(M).

That is, 5%f = 0. So, it follows that 82 f(§f) = 0. Hence (2) is proved.
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If we use (2) and apply 6 to both sides of (1), we easily get § 8(X) = 8(X)45. Hence (3)
is proved.

Definition 4. If f is a smooth function on M, then the carrier (or support) of
f is the closure of the set {x € M: f(x) # 0}. This set is denoted bycarr f.
The carrier (or support) of a cross-section ¢ is the set defined by

carr o = closure {x € B:a(x) # 0,}.

Definition 5. Let & be a differential form on M, then @ is said to have compact carrier,
if carr @ is compact. The set of differential forms on Mwith compact carrier is denoted
by A.(M).

Definition 6. The partial exterior derivative with respect to Mis the linear map
Oy:A(M X N) - A(M x N)given by

r

OuD o, ,2) = ) (1 3" (7o, ,3,+,2,))

j=0

+ 2 (-1t Q((Zi 'Zj)M 2y, ,Zi,---,Zj v, Zy)
0<i<j<p

The partial exterior derivative with respect toNis given by
T
Ou o, Z) = ) (-1 2" (2o, ... 2,))
j=0

N z D™ ((z 'Zj)N Zo, e i 2y 2,
0<i<j<p
QO e A"(M X N).
Both the partial exterior derivatives are homogeneous of degree 1.
Smooth family of cross-sections

Suppose that ¢ = (E,m, M, F) is a vector bundle and o: R — Sec ¢ is a set map; that is,
oassigns a cross-section g;0f & to every real number t € R. Ifamap R X M — Egiven by
o(t,x) = a;(x) is smooth, then the map is called a smooth family of cross-sections
(YYau, 1976). The set of smooth families of cross-sections in ¢ is denoted by {Sec; &}; cg.
For each fixed x € M, each smooth family determines a smooth map a,: R = F, given by

o, (t) = a(t,x).
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Definition 7. For a smooth family of cross-sections agin &, the derivative of gisthe
smooth family & given by

o(t+s,x)— o(t,x)
S

g(t,x) = ;i_r)r(l)

d
= —0,

ds

s=t

For a € R, the integral of ¢ is the smooth family fa o given by

(fa a) (t,x) = fat o, (s) ds.
The definite integral f:o is the cross-section in & given by

b b
(flo) @) = [} ox (®) at.

Using the fundamental theorem of calculus, we obtain the following relations for a
smooth family o

b

fa'tdt=ab—aa, abeR

a
and

(fa a).(t,x) = o(t,x), t e R x €EM.

For the vector bundle AP Ty, a smooth family of p-forms on a manifold M is a smooth
family of cross-sections in AP Ty (Schoen and Yau, 1979). The set of smooth families of
p-forms on M is denoted by {4V (M)}t cp and {47 (M)}t cr =AY (R X M).

Consequently, a smooth family of p-forms on M is homogeneous of bidegree (0,p) and a
differential formon R x M.

Proposition 3. Let M and N be two manifolds. Ifgp: M — N is a smooth map, and @ is a
smooth family of p-forms on N, then

(@ x@) @) = (t xp)'®
Proof. Lett € R,y € N. Suppose that @,: R - APT, (N)" is the smooth map given by
D, (t) = o(t,y).

Then, AP (d@)y © @y (x) : R > APT,(M)" for x € M and
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((l X QO)* (p)x = NP (d(p); ° (pqa(x)-

Since AP (d¢)y is a linear map, it follows that

d
(l X QO)* (p]x = /\P(d(p); ° d_<p<p(x)-

! 5

That is,
[t X )" @ = AP(d@)y © Pyry = [(L X @) ], .
Hence, ((t X @)* @) = (1 x ¢)*®, which completes the proof.

Theorem 1. If X € X (M) and ®is a smooth family of p-forms on M, then

[ @, dt = [’ 60, dt.

Proof. If we use an atlas on M andreduce to the case M, then it will be a vector space E.
As a result, we have

A% (R X E) =S(R X E; APE®).

Let a € APE*, f € S(R x E). Since both sides of 5fab @, dt = fab 5%, dt are linear we

may restrict to the case @ (¢, x) = f(t,x)a. In the circumstance, § f: &, dt = fab 5, dt
is equivalent to

n b b
0 af
*Y — *V
Z[ae"ff(t’x) dt|e Aa—Z[faev(t,x)dt e Aa,
v=1 a vV |a

d
b2 b

e” direction. Furthermore, it is evident that § [ &, dt = [ 5@, dt. This completes the

proof.

where e*, eVis a pair of dual bases for E*, E and denotes the partial derivative in the

If Mis a manifold and Q € AP (R x M), then Q can be uniquely decomposed in the form
Q=0 +¥, where® € A% (Rx M), ¥ € AVP"1(R x M).

Assume that the smooth family of p-forms &, which satisfies @, = j/® = jiQ. This

smooth family will be denoted by j*Q and (j*Q), = j{Q.By integrating this family, we

obtain the following differential form 120 = fab(im) dt on M. The assignment Q. + I2Q)

defines a linear map I2: A(R x M) — A(M) which is homogeneous of degree zero
(Wang and Zhang, 2011).
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Lemma 2. Let Tdenotes the vector field ;—t on R and Q € A(R x M); consider it as a
vector field on R x M. Then

(i) = j: 0(T)Q, Q€ AR x M).

Proof. Let a € APE*. Assume that Mis a vector space Eand that Q € A%? (R x E)is of
the form

N(t,x)= f(t,x)afor f € S(R X E).
Then

, d
G000 = f (5.7 ) a
BT, ) = GrT)D) ).

Thus, (j{Q)s = js 6(T)Q, where Q € A(R x M).

Assume that X be a vector field on M which generates a one-parameter group of
diffeomorphisms @: RxX M — M. Then, ¢*® € A(RX M) and ¢"0(X)® € A(R X
M)for @ € A(M). If ¢, : M > M is the map ¢,(x) = @(t,x), then the corresponding
smooth families of differential forms on Mare given by

(9" @), = ¢ Pand (T 0(X)P), = ¢ 0(X)®.
Proposition 4. If @ € AP (M), then the family ¢; @ satisfies the following relation:

t
p;id— &= f(gojB(X)cD) ds.
0

In particular, (p;®)y = 0(X)®.
Proof. Itisevidentthat T ~ X. It implies that ¢*6(X) = 6(T)¢"*. Hence

f (@:0(X)®) ds = f (260(T)®) ds
0 0

= IL0(X)p* P
= (o™ ®) — (joo'®)
= p;®— .

10



Barishal University Journal Part 1, 5(1&2): 1-14 (2018) Alam et al.

Using the fundamental theorem of calculus, we obtain the following relations for a
smooth family o

fba’tdtzab—aa, abeR
a
and
(fa G)I(t,x) = o(t,x), t eR x EM.
From the above relations, we get
Ps0(X)D = (i@ — P)s = (9 P)s.
Thus, 8(X)® = @y 6(X)P = (p;P), which completes the proof.

Oriented n-manifold

For an oriented n-manifold Ma graded §-stable ideal Ay, (R x M) c A(R x M)is defined
as follows:

If carr @ N (K x M) is compact for all closed, finite intervals K, then @ € Ay (R x M).

Assume that R is oriented by the one-form §tand R X M is the product orientation.
Consider I as a finite open interval (a,b) c Rand let j,,j, : M > RXx M be the
inclusions opposite a and b. Then, carr Q@ n (I x M) is compact for Q € A% (R x M)
(Cheng and Yau, 1975). Consequently, we can form the integral [ el

Lemma3. If Q € A" {(Rx M), then [, ,,Q = [, 12 i(T)Q

I XM

Proof. Let Lbe a compact subset of R™ and let M be an oriented n-manifold. By using a
finite partition of unity in M, wereduce it to the case M = R"and carr Q c R X L.
Assume that {e;,-- ,e, } is a positive basis of R®.Then 6t Ae*! A -+ Ae*" isa positive
(n + 1)-formin R x R™. Iff € S(R™™1) and carr f c R x L, then we obtain

Q=f-8tAe*' A Ne™.

Also, we get i(T)Q = f-e*t A -+ Ae*™ and it follows that

(12 (M) (x) = (fff(t, x)dt) e LA Ne™,

Thus, [ 12UDQ= [ [ f(6,x) dt dx? - dx™
= fl i €
Hence, [, = [, 12 i(T)Qfor Q € A} 1 (R x M) which completes the proof.

11
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Theorem 2. If M is an oriented n-manifold and @ € A}; (R x M), then
f]xM(S(p = fMj;(p - fMj;(p'

Proof. Let M be an oriented n-manifold and @ € A}, (R x M). Assume that the vector
field T on R x Mgiven by

T(s,x) = (;—t,O), sERx €M.
The operator 12 o i(T) is determined by T and given by
12 o i(T): AP (R x M) - AP~1(M).
The above operator evidently restricts to the following operator
12 o i(T): AV (R x M) - AL (M).

We know that if Q€ A%T (R x M), then [
obtain

1 = J 12 i(T)Q. Consequently, we

[ 180 = [, (12 i(T)) 600,
It follows that
12i(T)6d = jid — jid — 812 i(T)P.
Since @ € A (R x M) and I2i(T)® € A%X"1(M), so we have
[, 81 (Mo =o.
Thus, [,,,,6® = [,,j;® — [,,ja® which completes the proof.
Theorem 3. Let U be a neighbourhood of the closed unit-ball B and @ € A™(U). Then,
Jpo0 = [ (i)
Proof. Assume that E is a vector space andpbe a smooth function in E such that

p(x)=1,|x| <landcarrp cU.

If we replace @ by p - @, then either side of (i) will not be changed.Since p - ® € A% (E),
S0 we may assume that @ € A% (E).

Again, consider g as a smooth function in Esuch that

N | =

1
q(x) =1,|x| <75 q(x) = 0, |x| =

12
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It follows that i* (1 — q)® = i*®. Furthermore, since q - @ € AZ(B), it is obvious that
J56® = [56[(1 = q) - @1 + [;8[q - @] = [,6[(1 - q) - @].

Therefore, if we replace @ by (1 — q) - @, neither side of (i) will be changed; that is, it
will be sufficient to consider the case

P(x)=0,|x| <

I

Thus, we have [,6¢ = [ 60,4 = {x : %< x| < 1}. Assume that the diffeomorphism
a: Rt xS - E — {0} given by

a(t,x) =tx (t € RT,x €S).

Since a preserves orientations, setting I = G 1), we obtain
Jpb60 = [, 60 = [, a*6® = [, b5(a*D).

If M is an oriented n-manifold and @ € A} (R x M), then

f]xMS(p = fMj;(p - J.Mj;(p'
Also, since i = a o j; and jj,,a"® = 0, we get

fB(Sd) = fgjfa*d) - fgjik/4a*d)
= [,

Thus, [, 6® = [i*® and the theorem is proved.
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